Yinglong Superhard Materials Manufactory
Home > Knowledge > Content
Product Categories
Contact Us

YingLong Superhard Materials Manufactory

Add: Lintong District, Xi'an, China

Tel: +86-29-63354776/63354775

Fax: +86-29-63354775/83852230

Skype: HeroHome-Sunny

Email: Info@HeroHomecn.com

Export@herohomecn.com

Tech@herohomecn.com

Manufactured Abrasives


Manufactured Abrasives


    Abrasives are shaped for various purposes. Natural abrasives are often sold as dressed stones, usually in the form of a rectangular block. Both natural and synthetic abrasives are commonly available in a wide variety of shapes, often coming as bonded or coated abrasives, including blocks, belts, discs, wheels, sheets, rods and loose grains.



Bonded abrasives

    A bonded abrasive is composed of an abrasive material contained within a matrix, although very fine aluminium oxide abrasive may comprise sintered material. This matrix is called a binder and is often a clay, a resin, a glass or a rubber. This mixture of binder and abrasive is typically shaped into blocks, sticks, or wheels. The most usual abrasive used is aluminium oxide. Also common are silicon carbide, tungsten carbide and garnet. Artificial sharpening stones are often a bonded abrasive and are readily available as a two sided block, each side being a different grade of grit.

    Grinding wheels are cylinders that are rotated at high speed. While once worked with a foot pedal or hand crank, the introduction of electric motors has made it necessary to construct the wheel to withstand greater radial stress to prevent the wheel flying apart as it spins. Similar issues arise with cutting wheels which are often structurally reinforced with impregnated fibres. High relative speed between abrasive and workpiece often makes necessary the use of a lubricant of some kind. Traditionally they were called coolants as they were used to prevent frictional heat build up which could damage the workpiece (such as ruining the temper of a blade). Some research suggests that the heat transport property of a lubricant is less important when dealing with metals as the metal will quickly conduct heat from the work surface. More important are their effects upon lessening tensile stresses while increasing some compressive stresses and reducing "thermal and mechanical stresses during chip formation".

    Various shapes are also used as heads on rotary tools used in precision work, such as scale modelling.

    Bonded abrasives need to be trued and dressed after they are used. Dressing is cleaning the waste material (swarf and loose abrasive) from the surface and exposing fresh grit. Depending upon the abrasive and how it was used, dressing may involve the abrasive being simply placed under running water and brushed with a stiff brush for a soft stone or the abrasive being ground against another abrasive, such as aluminium oxide used to dress a grinding wheel.

    Truing is restoring the abrasive to its original surface shape. Wheels and stones tend to wear unevenly, leaving the cutting surface no longer flat (said to be "dished out" if it is meant to be a flat stone) or no longer the same diameter across the cutting face. This will lead to uneven abrasion and other difficulties.



Coated abrasives

    A coated abrasive comprises an abrasive fixed to a backing material such as paper, cloth, rubber, resin, polyester or even metal, many of which are flexible. Sandpaper is a very common coated abrasive. Coated abrasives are commonly the same minerals as are used for bonded abrasives. A bonding agent (often some sort of adhesive or resin) is applied to the backing to provide a flat surface to which the grit is then subsequently adhered. A woven backing may also use a filler agent (again, often a resin) to provide additional resilience.

    Coated abrasives may be shaped for use in rotary and orbital sanders, for wrapping around sanding blocks, as handpads, as closed loops for use on belt grinders, as striking surfaces on matchboxes, on diamond plates and diamond steels. Diamond tools, though for cutting, are often abrasive in nature.


Other abrasives and their uses

    Sand, glass beads, metal pellets copper slag and dry ice may all be used for a process called sandblasting (or similar, such as the use of glass beads which is "bead blasting"). Dry ice will sublimate leaving behind no residual abrasive.

    Cutting compound used on automotive paint is an example of an abrasive suspended in a liquid, paste or wax, as are some polishing liquids for silverware and optical media. The liquid, paste or wax acts as a binding agent that keeps the abrasive attached to the cloth which is used to as a backing to move the abrasive across the work piece. On cars in particular, wax may serve as both a protective agent by preventing exposure of the paint of metal to air and also act as an optical filler to make scratches less noticeable. Toothpaste contains calcium carbonate or silica as a "polishing agent" to remove plaque and other matter from teeth as the hardness of calcium carbonate is less than that of tooth enamel but more than that of the contaminating agent.

    Very fine rouge powder was commonly used for grinding glass, being somewhat replaced by modern ceramics, and is still used in jewellery making for a highly reflective finish.

    Cleaning products may also contain abrasives suspended in a paste or cream. They are chosen to be reasonably safe on some linoleum, tile, metal or stone surfaces. However, many laminate surfaces and ceramic topped stoves are easily damaged by these abrasive compounds. Even ceramic/pottery tableware or cookware can damage these surfaces, particularly the bottom of the tableware which is often unglazed in part or in whole and acts as simply another bonded abrasive.[3]

    Metal pots and stoves are often scoured with abrasive cleaners, typically in the form of the aforementioned cream or paste or of steel wool and non woven scouring pads which holds fine grits abrasives.

    Human skin is also subjected to abrasion in the form of exfoliation. Abrasives for this can be much softer and more exotic than for other purposes and may include things like almond and oatmeal.[4] Dermabrasion and microdermabrasion are now rather commonplace cosmetic procedures which use mineral abrasives.

    Scratched compact discs and DVDs may sometimes be repaired through buffing with a very fine compound, the principle being that a multitude of small scratches will be more optically transparent than a single large scratch. However, this does take some skill and will eventually cause the protective coating of the disc to be entirely eroded (especially if the original scratch is deep), after which the data surface will be destroyed if abrasion continues.